On the Choice of Subspace for Iterative Methods for Linear Discrete Ill-posed Problems
نویسندگان
چکیده
with a large matrix A of ill-determined rank. Thus, A has many “tiny” singular values of different orders of magnitude. In particular, A is severely ill-conditioned. Some of the singular values of A may be vanishing. We allow m ≥ n or m < n. The right-hand side vector b̃ is not required to be in the range of A. Linear systems of equations of the form (1) with a matrix of ill-determined rank are obtained when discretizing linear ill-posed problems, such as Fredholm integral equations of the first kind with a smooth kernel. They also arise in image restoration. Following Hansen (1998), we refer to linear systems of equations with a matrix of ill-determined rank as linear discrete ill-posed problems. In many linear discrete ill-posed problems that arise in the applied sciences and engineering, the right-hand side vector b̃ is contaminated by measurement and discretization errors, i.e.,
منابع مشابه
FGMRES for linear discrete ill-posed problems
GMRES is one of the most popular iterative methods for the solution of large linear systems of equations. However, GMRES generally does not perform well when applied to the solution of linear systems of equations that arise from the discretization of linear ill-posed problems with error-contaminated data represented by the right-hand side. Such linear systems are commonly referred to as linear ...
متن کاملPreconditioned iterative methods for linear discrete ill-posed problems from a Bayesian inversion perspective
In this paper we revisit the solution of ill-posed problems by preconditioned iterative methods from a Bayesian statistical inversion perspective. After a brief review of the most popular Krylov subspace iterative methods for the solution of linear discrete illposed problems and some basic statistics results, we analyze the statistical meaning of left and right preconditioners, as well as proje...
متن کاملKrylov subspace iterative methods for nonsymmetric discrete ill-posed problems in image restoration
The BiCG and QMR methods are well-known Krylov subspace iterative methods for the solution of linear systems of equations with a large nonsymmetric, nonsingular matrix. However, little is known of the performance of these methods when they are applied to the computation of approximate solutions of linear systems of equations with a matrix of ill-determined rank. Such linear systems are known as...
متن کاملTikhonov regularization based on generalized Krylov subspace methods
We consider Tikhonov regularization of large linear discrete ill-posed problems with a regularization operator of general form and present an iterative scheme based on a generalized Krylov subspace method. This method simultaneously reduces both the matrix of the linear discrete ill-posed problem and the regularization operator. The reduced problem so obtained may be solved, e.g., with the aid ...
متن کاملCompact Linear Operators and Krylov Subspace Methods
This thesis deals with linear ill-posed problems related to compact operators, and iterative Krylov subspace methods for solving discretized versions of these. Linear compact operators in infinite dimensional Hilbert spaces will be investigated and several results on the singular values and eigenvalues for such will be presented. A large subset of linear compact operators consists of integral o...
متن کامل